

ALLPLAN BRIDGE

DIE WELTWEIT ERSTE KOMPLETTLÖSUNG FÜR BRÜCKENINGENIEURE

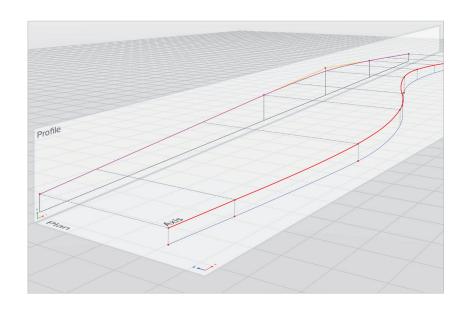
NEU! ALLPLAN BRIDGE

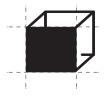
Kostenfreie Testversion unter allplan.com/bridge

MODELLIERUNG, BERECHNUNG, BEMESSUNG UND KONSTRUKTION IN 4D

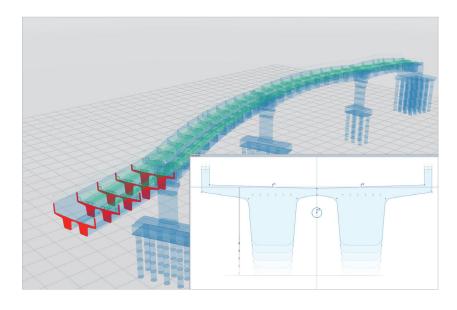
Allplan Bridge macht all das möglich — einfacher, schneller, präziser als jemals zuvor.

Änderungen an Brückenmodell sind arbeitsintensiv und fehleranfällig. Mit Allplan Bridge können Brückenmodellierer, Tragwerksplaner und Konstrukteure diese Herausforderungen meistern. Das geometrische und das statische Modell sind aufgrund ihres hohen Detaillierungsgrades ideal für die visuelle Planung und Koordination: Wenn Sie Ihr Modell an einer Stelle ändern, passen sich alle zugehörigen Brückenelemente inklusive des statischen Modells automatisch an.


Kostenfreie Webinare und Testversion zum Download unter allplan.com/bridge

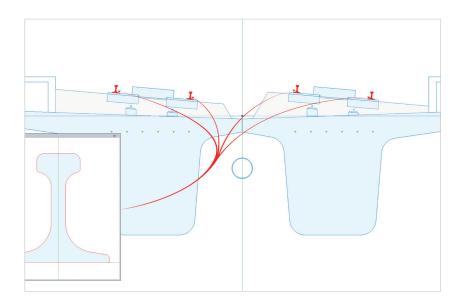

2 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 3

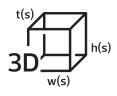
1. ACHSEN ANLEGEN


Jedes Brückenbauprojekt startet mit einer oder mehreren Achsen – mit Allplan Bridge kann man die Daten (über das LandXML-Format) übernehmen oder manuell definieren. In beiden Fällen werden die Trassenführungen parametrisch gespeichert.

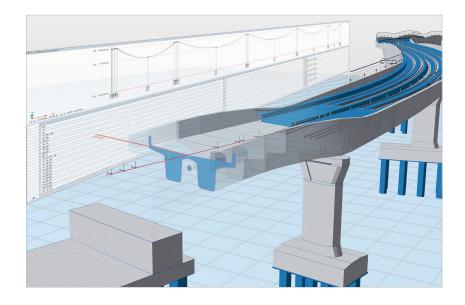
2. QUERSCHNITTE DEFINIEREN

Über die Eingabe definieren Sie einen beliebigen Querschnitt und legen die Geometrie mit ihren Abhängigkeiten und Variablen fest. Diese parametrischen Querschnitte lassen sich jederzeit anpassen und können als Vorlage gespeichert und wiederverwendet werden.



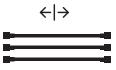

4 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 5

3. STANDARDPROFILE REFERENZIEREN

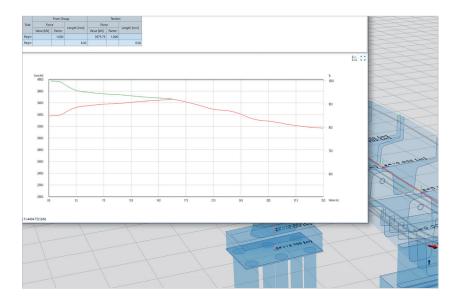

Bei der Definition des Querschnitts können standardisierte und wiederholt im Querschnitt angeordnete Profile (wie Längssteifen in Stahl- und Verbund- querschnitten oder vorgefertigte Träger) einfach in das Profil eingesetzt werden. Dies ermöglicht eine automatische Anpassung der Geometrie an die Querschnittsform.

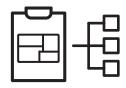
4. PARAMETRISCH MODELLIEREN

Das interdisziplinäre Modell aus Allplan Bridge ist vollständig parametrisch. Änderungen können jederzeit vorgenommen werden. Die abhängigen Objekte werden automatisch angepasst. Allplan Bridge eignet sich für alle Leistungsphasen — vom Vorentwurf bis zur Ausführungsplanung, einschließlich der Planung des Bauablaufs.


6 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN
ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN
7

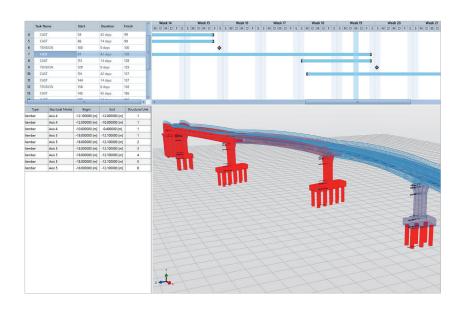
5. PARAMETRISCHE MODELLIERUNG VON SPANNGLIEDERN

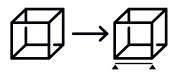

Mit Allplan Bridge lässt sich eine Vielzahl von Spannkabeltypen parametrisch erfassen — mit sofortigem und nachträglichem Verbund, intern und extern, längs, quer und vertikal. Eine Funktion zum Kopieren, Spiegeln, etc. beschleunigt den Arbeitsprozess zusätzlich.



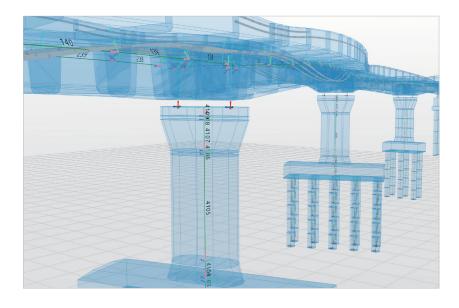
6. SPANNVORGÄNGE PLANEN

Es stehen die Spannaktionen Spannen, Keilschlupf und Nachlassen zur Verfügung, die man am Anfang, am Ende oder an beiden Seiten des Spannkabels ausführen kann. Anhand von Kabelgeometrie und Materialeigenschaften werden die durch Reibung oder ungewollte Umlenkung bedingten Spannkraftverluste berechnet.



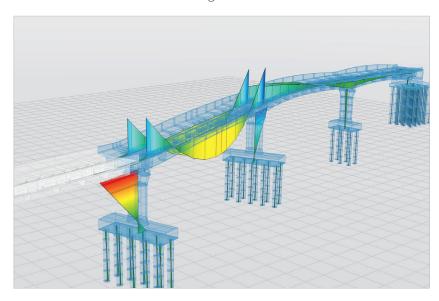

8 ALLPLAN BRIDGE – BRÜCKEN PARAMETRISCH PLANEN ALLPLAN BRIDGE – BRÜCKEN PARAMETRISCH PLANEN 9

7. VIERTE DIMENSION: DEFINITION DES BAUABLAUFS


Die Zeit als 4. Dimension wird einfach durch die Definition des Bauablaufes berücksichtigt. Der Bauplan wird in mehrere Bauphasen aufgeteilt und weiter auf einzelne Aufgaben, wie z.B. Betonieren und Aushärten, Spannen der Spannkabel, etc. Die betroffenen Bauteile werden den Aufgaben interaktiv zugewiesen.

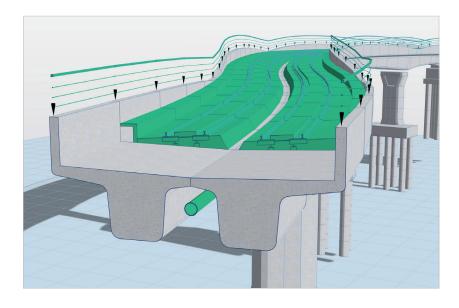
8. AUTOMATISCHE ABLEITUNG DES STATISCHEN MODELLS

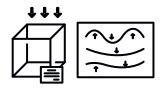
Dank bahnbrechender Technologie generiert Allplan Bridge das statische Modell automatisch aus dem geometrischen Modell heraus. Arbeitsauf wand und Fehleranfälligkeit werden dadurch enorm reduziert. Der Ingenieur behält die volle Kontrolle, indem er gezielt festlegen kann, welche Bauteile zum Tragverhalten beitragen und welche nur Lasten darstellen oder ob ein Stab- oder Trägerrostmodell verwendet werden soll.




10 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 11 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 11

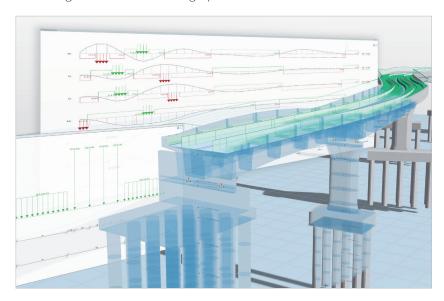
9. BAUABLAUFBERECHNUNG


Allplan Bridge analysiert den definierten Bauablauf und erzeugt in einem automatisierten Prozess alle notwendigen Definitionen, wie Lastfälle, Elementaktivierungen und Berechnungsaktionen. Das beinhaltet auch die Daten zur Berechnung nichtlinearer zeitabhängiger Effekte wie Kriechen und Schwinden. Dabei ist völlige Transparenz gewährleistet. Der Ingenieur behält jederzeit die volle Kontrolle über die generierten Elemente und die Übersicht über die Ergebnisse..



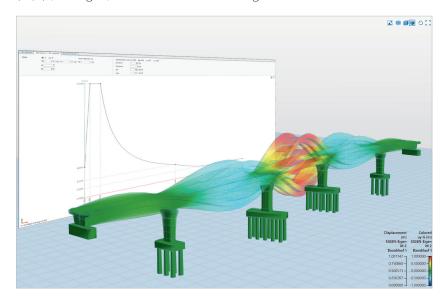
10. ZUSÄTZLICHE LASTEN AUFBRINGEN

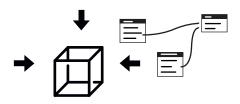
Das Gewicht und die Position von Eigenlasten aus nichtragenden Elementen (wie Gehweg, Fahrbahn usw.) werden automatisch aus dem geometrischen Modell abgeleitet. Der Benutzer muss nur die Zeit angeben, zu der das Element installiert wird und die Last wird entsprechend aufgebracht. Andere Zusatzlasten, wie Temperaturunterschiede oder Wind, können ebenfalls komfortabel definiert und angewendet werden.




12 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 13

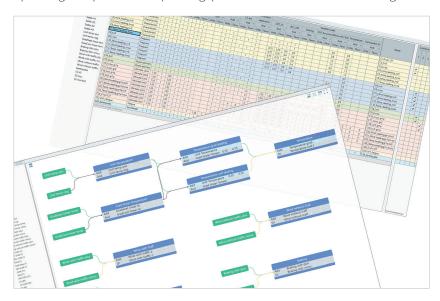
11. VERKEHRSLASTEN


Verkehrslasten können auf sehr komfortable Weise definiert und angewendet werden. Automatisch entsprechend der gewählten Norm so wie auch mit einem generischen Ansatz, um jede Art von Verkehrslasten berücksichtigen zu können. Die ungünstigste Position von Verkehrslasten kann einfach und schnell ermittelt werden. Zuerst werden die Einflusslinien berechnet und im zweiten Schritt werden die Einflusslinien ausgewertet und die Ergebnisse als Einhüllende gespeichert.



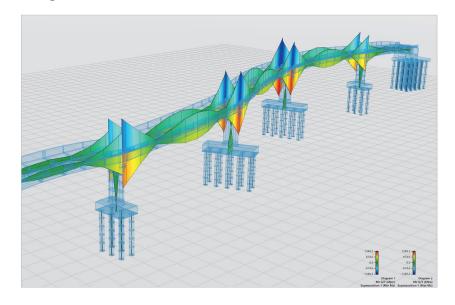
12. ERDBEBENEINWIRKUNGEN

Allplan Bridge verwendet das multimodale Antwortspektren-Verfahren, um die Auswirkung von Erdbebenlasten auf die Struktur zu erfassen. Die Lösung basiert auf der Ermittlung der Schwingungsanregung der relevanten Eigenformen und der Kombination der einzelnen Anteile. Die Amplituden der den einzelnen Eigenformen zugeordneten Schnittkräfte und Verformungen werden dabei z. B. mit der Methode der "Complete Quadratic Combination (CQC)", überlagert, um die relevanten Bemessungswerte zu erhalten.



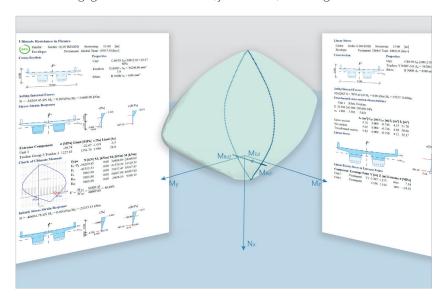
14 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 15 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 15

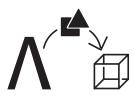
13. ÜBERLAGERUNG UND KOMBINATIONEN


Die Benutzerfreundlichkeit der Überlagerung ist bahnbrechend. Die schematische Definition kombiniert maximale Flexibilität mit optimaler Übersicht. Dies gilt auch für die tabellarisch definierten und visualisierten, in den Normen vorgeschriebenen Kombinationen. Damit ist eine optimale Übersicht von den Kombinationstypen und Lastfaktoren gewährleistet. Spannungsführende Überlagerung für ausgewählte Spannungskomponenten in Spannungspunkten ist unter anderem auch möglich.

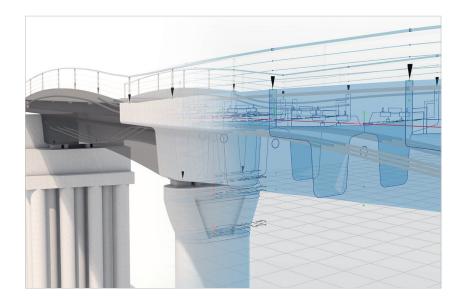
14. DURCHFÜHRUNG DER STATISCHEN BERECHNUNG

Für alle zuvor im Bauablauf automatisch und manuell definierten Berechnungsaktionen wird eine globale statische Berechnung basierend auf der Bernoulli- Balkentheorie durchgeführt. Die Theorie wurde erweitert, um auch die Änderung des Querschnitts korrekt zu berücksichtigen. Darüber hinaus wird die nichtlineare Berechnung von zeitabhängigen Effekten unter Beachtung der genormten Bemessungsregeln durchgeführt.



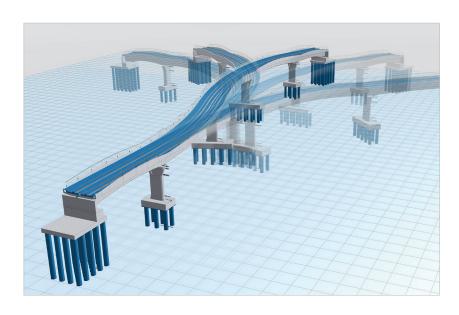

16 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 17 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 17

15. BEMESSUNG UND NACHWEISFÜHRUNG


Die Dimensionierung der erforderlichen Bewehrungsflächen basiert auf Traglast- und Gebrauchslasterfordernissen. Die Biege-, Torsions- und Schubwiderstände, sowie die Erfordernisse der Spannungsbegrenzung und Rissbreitenlimitierung werden für die relevanten Schnittkraftkombinationen überprüft. Für die Beurteilung der Tragfähigkeit und Gebrauchstauglichkeit nach der Euronorm wird der errechnete erforderliche Wert oder der vorgegebene Wert verwendet, je nachdem, welcher größer ist.

16. PARAMETRISCHE POSITIONIERUNG

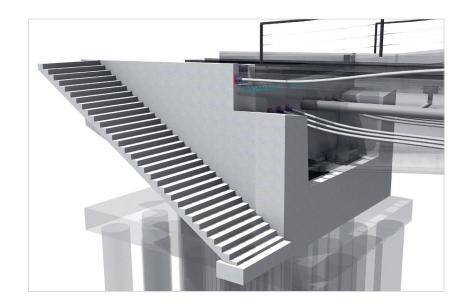
Um das Modell mit Details wie Lichtmasten oder Spanngliedankern zu ergänzen, können in Allplan Bridge Objekte aus der Allplan-Bibliothek referenziert werden. Die Objekte werden automatisch positioniert und bei jeder Änderung der Brückengeometrie angepasst.



18 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 19 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 19

17. ÄNDERUNGEN BERÜCKSICHTIGEN

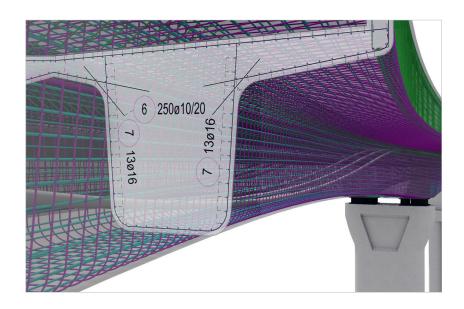
Bei jeder Änderung passt sich das komplette 4D-Modell an. Wenn sich beispielsweise die Trasse ändert, so überträgt sich diese Änderung automatisch auf das gesamte Brückenmodell. Das gilt auch für das statische Modell einschließlich der Definition des Bauablaufs und der damit verbundenen Lastfälle und Berechnungen.



EFFIZIENTER WORKFLOW MIT ALLPLAN ENGINEERING

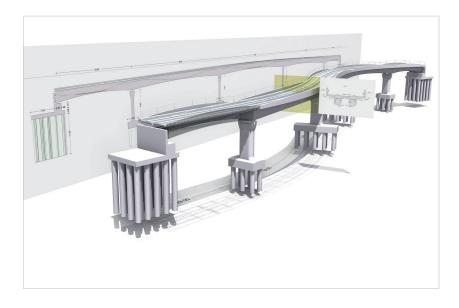
18. FREIFORM-MODELLIERUNG

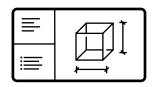
Mit der leistungsstarken 3D-Modellierungsfunktionalität können Sie alle Brückendetails kompromisslos umsetzen: einfach, flexibel und mit höchster Präzision. Der Parasolid®-Modellierkern von Siemens PLM bewältigt mühelos komplexe Freiform-Geometrien auf Basis von B-Splines und NURBS sowie Standardaufgaben wie Verbindungen, Ausschnitte und Drainagen.


20 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 21

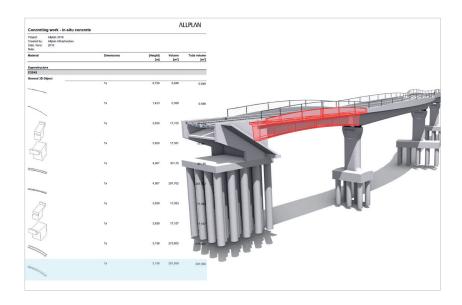
EFFIZIENTER WORKFLOW MIT ALLPLAN ENGINEERING

19. BEWEHRUNGSMODELLIERUNG


Bewehren Sie selbst anspruchsvolle Brücken mit doppelter Krümmung und veränderlichem Querschnitt komfortabel und schnell. Die Bewehrung wird in unterschiedlichen Querschnitten definiert und die Übergänge zwischen den Querschnitten mit Pfaden beschrieben. Es können diverse Regeln hinterlegt werden, z.B. wie die Bewehrungsstöße ausgeführt werden sollen. Bewehrungen werden so automatisch generiert.


20. PLÄNE ERSTELLEN

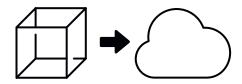
Aus dem digitalen Brückenmodell werden Ansichten, Längsschnitte entlang beliebiger Pfade und Querschnitte abgeleitet. Der CineRender von Maxon wird für realistische Visualisierungen eingesetzt. Mit den leistungsfähigen Layout- und Konstruktionswerkzeugen von Allplan erstellen Sie hochwertige Planungsunterlagen.


22 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 23 ALLPLAN BRIDGE - BRÜCKEN PARAMETRISCH PLANEN 24

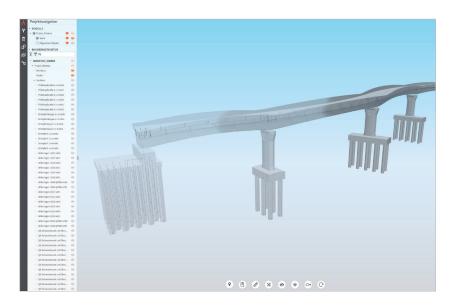
EFFIZIENTER WORKFLOW MIT ALLPLAN ENGINEERING

21. REPORTS ERSTELLEN

Das digitale Brückenmodell enthält eine Vielzahl von Informationen. Umfangreiche Reports mit Abmessungen, Flächen, Volumen, Gewichten und Mengen stehen auf Knopfdruck zur Verfügung. Dies gilt auch für Biegelisten.


22. DATENAUSTAUSCH

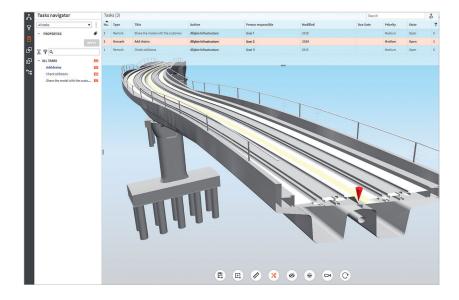
Allplan Bridge verfügt über Schnittstellen zu Allplan Engineering und Allplan Bimplus, um das 4D-Modell in vielen Datenformaten wie IFC, DWG, DGN oder PDF zu speichern.


24 ALLPLAN BRIDGE – BRÜCKEN PARAMETRISCH PLANEN ALLPLAN BRIDGE – BRÜCKEN PARAMETRISCH PLANEN 25

BIM COLLABORATION MIT ALLPLAN BIMPLUS

23. AUSTAUSCH DES STATISCHEN MODELLS

Das in Allplan Bridge erzeugte statische Modell kann in die cloud-basierte BIM-Plattform Allplan Bimplus hochgeladen werden. Dies ermöglicht die Übergabe des statischen Modells an andere Statik-Lösungen, die mit Allplan Bimplus verbunden sind.



ALLPLAN BIMPLUS

Jetzt kostenlos tester bimplus.net

24. BIM COLLABORATION

Durch die Kombination von Allplan mit der cloudbasierten BIM-Plattform Allplan Bimplus haben alle Projektbeteiligten jederzeit und überall Zugriff auf den neuesten Planungsstand. Die BIM-Koordination erfolgt interaktiv am digitalen Brückenmodell. Abweichungen werden frühzeitig erkannt und behoben. Ein wichtiger Beitrag, um sicherzustellen, dass das Bauvorhaben termingerecht und innerhalb des Budgets abgeschlossen wird.

ÜBER DAS UNTERNEHMEN

ALLPLAN ist ein globaler Anbieter von Building Information Modeling (BIM) Lösungen für die AEC-Industrie. Seit mehr als 50 Jahren treibt ALLPLAN die Digitalisierung der Baubranche maßgeblich voran. An den Anforderungen der Anwender orientiert, bieten wir innovative Werkzeuge für das Planen und Bauen von Bauwerken und inspirieren unsere Kunden, ihre Visionen zu verwirklichen.

ALLPLAN mit Hauptsitz in München ist Teil der Nemetschek Group. Über 400 Mitarbeiter weltweit schreiben die Erfolgsgeschichte des Unternehmens mit Leidenschaft fort.

ALLPLAN IST MITGLIED BEI:

Sie möchten mehr erfahren? allplan.com/bridge

ALLPLAN Deutschland GmbH

Konrad-Zuse-Platz 1 81829 München Deutschland info@allplan.com allplan.com

ALLPLAN Infrastructure GmbH

Andreas-Hofer-Platz 17 8010 Graz Österreich office@allplan-infra.com allplan-infra.com

